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6 Department of Mathematical Physics, St Patrick's College Maynooth, Maynooth, Ireland 
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Abstract. It is shown that de-breaking generalized Yang-Mills systems in 2n dimensions 
have hedgehog (iistanton) solutions for all n >  1. For the cases n = 3  and 4, the equations 
are solved in the asymptotic regions and t h e x  hedgehogs are studied numerically. 

The Yang-Mills (YM) model in four dimensions occupies a central place in the theory 
of fundamental interactions, both in QCD and electroweak dynamics. In addition to the 
successes of these theories at the perturbative level, there is the important sector of 
non-perturbative effects in both of them, that must be considered. In the latter area, 
the central role is played by the instanton field coniigwations of the given model, which, 
as solutions to the Euclidean field equations, characterize the vacuum of the theory 
in question. In the case of pure Yang-Mills theory, these instantons are thoroughly 
studied. 

The generalization of the YM model to higher dimensions, such that the hierarchy 
of the generalized YM(GYM) models [ 11 supports instanton solutions, is essentially phys- 
ically motivated [I, 31. The motivation is very. Simply to d e k e  models in (even) higher 
dimensions; which under dimensional reduction yield residual systems that are alro 
endowed with, instanton solutions. Since some of the components of the connection 
field in (the higher) 2n dimensions will appear as Wggs fields after this descent to 
d(<2n), this procedure is capable of producing a generalization of the YM-Higgs system 
which supports a localized instanton in d dimensions. -The said localization is due to 
the appearance of an absolute scale in the theory, as a result of the dimensional reduction 
over a compact coset space. 

In particular when d=4 ,  these supply various candidates to generalize both QCD 
and electroweak dynamics, which are endowed with loculized instantons, central to the 
study of non-perturbative effects in both these theories. The advantage of this l o d z a -  
tion property in the case of (generalized) QCD is the removal of the well known 
difficulties posed by the arbitrary scale of the YM instantons, while the occurrence of a 
Higgs multiplet in a (generalized) electroweak model is a self-evident requirement. 

According to the above prescription for constructing localized instantons in four 
dimensions, the first step is the generalization of the YM system to QN even dimensions, 
such that the GYM models support instanton solutions. For the above prescription to 
work, namely that the residual system support instantons, the higher dimensional model 
in the corresponding Euclidean dimensions must support instantons. While explicit 
solutions [3 ,4]  are found in d=4p, the corresponding task in d=2(2p+l )  has not been 
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performed, even though we believe such solutions to the appropriate GYM models exist. 
The reason for this omission was that the latter class of solutions cannot be found 
explicitly and must be found numerically. It is the main aim of this work to supply 
these solutions in 2(2p + 1) dimensions, completing the demonstration that GYM systems 
in all even dimensions support instanton solutions. In addition, we shall draw some 
general conclusions on the infinite asymptotic behaviour of instantons in gauge field 
systems, which we note at the end of this letter. 

The study of instanton solutions of the generalized Yang-Mills (GYM) systems [l] 
defined on even-dmensional Euclidean spaces, has thus far been restricted to the case 
where the solutions in question satisfy the first-order selfduality equations. These per- 
tain to the conformally invariant SO(4p) GYM systems [2] defined in 4p dimensions, 
whose action in a topological sector is minimized globally by the self-duality condition 

F(2p) = *F(2P). (1) 

Here, F(2p) is thep-fold totally antisymmetrized product of the curvature 2-form F(2) 
and *F(2p) is its Hodge dual. Equations (1) have non-trivial chiral SO(4p) instanton 
solutions [3-51 on hP, which are the absolute minima of the action corresponding to 
the Lagrangian 

(2)  

There is another, more general type of self-duality equation in 2n=2(q+p) dimen- 

q p ,  p )  = tr F(2PY. 

sions, namely 

K2'q-p)"F(2p) = *(F(24))(2p) (3) 
with q > p  and in which a constant K with the dimension of length plays a role. Equation 
(3) solves the Euler-Lagrange equations pertaining to the Lagrangian 

L(q,p)= tr [ ~ ~ ( * - " ~ ( 2 ~ ) ~ + ~ ( 2 q ) ~ ] .  (4) 

The only known non-trivial solutions to the self duality equations (3) are those on 
compact symmetric spaces. Such solutions were found in [6] for arbitrary values of 
(q ,p )  for S2" and CP', and for the cases with q=l ,  for s+", CP' and HP" in [7] .  They 
have only trivial, pure gauge, solutions on &(p+*). The reason for this is that the 
curvature field strength of an instanton decays as a power of the radius at infinity. 

The purpose of the present note is to present the spherically symmetric, non-minimal 
instanton solutions to the Euler-Lagrange equations of Lagmngians of type (4). Such 
instantons were mentioned in [ 11 but have hitherto not been studied. These non-minimal 
instantons in (Higgs-free) gauge field theory are the analogues of the Skyrme [8] hedge- 
hog in the extended O(4) sigma-model. Both are solutions of the Euler-Lagrange equa- 
tions but not the respective self-duality equations, for the same reason. L i e  the Skyrme 
model, the Lagrangians (4) break scale invariance by virtue of the presence of K ,  which 
plays the role of supplying an absolute scale with respect to which the instanton is 
localized. This is also the case with the Skyrmion. 

That topologically stable solutions to the equations of (4) exist, follows from the 
inequality 

L(q, P) 22K2'4-p' tI F(2p)*(F(%))(&) (5) 
where the right-hand side is evidently proportional to the totally antisymmetrized 
n=(p+q)-fold product  FAFA FA ._ .  A F  which is the nth Chem-Pontryagin(c-p) 
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density. It follows that the integral of the density (4), the action, is bounded from 
below by a surfixe integral which takes a non-zero (Snite) value provided that suitable 
boundary conditions are satisfied. The latter require that the curvature field strength 
decays at infinity with some power of the radius r, which is inconsistent with the 
constraints of the self-duality equations (3). 

Before proceeding to a detailed study of these solutions, we point out that there is 
a larger class of Lagrangians than the class given by (4) whose equations of motion 
have non-minimal hedgehog solutions. This is seen directly by noting that the topologi- 
cal inequality (5 )  is not invalidated when a positive definite quantity is added to its 
left-hand side. There is in fact a unique set of such terms that can be employed in any 
dimension 2n. These additional terms must clearly be ‘Lorentz’ and gauge invariant, 
and we require further that they satisfy the ‘causality’ property that there occurs no 
higher power than the second power of the gradient of any given component of the 
connection gauge field A,.  These requirements narrow down the choice for such terms 
to 

L‘” = tr F(zm)* (6) 

where m < n, and there are n - 2 such terms. Thus we may give the most general Lagrang- 
ian in any given dimension 2n as 

which is defined in terms of (4) and (6). We shall refer to the class (4) as minimai 
Lagrangians, referring to the fact that these are the ones that are necessary to satisfy 
the topological inequality (5). For n>4, there is more than one choice for a minimal 
Lagrangian, corresponding to the multiple choices for partitions q andp of n, such that 
4#P. 

We shall now test the above arguments in favour of the existence of non-minimal 
GYM hedgehogs in 2n dimensions by considering the n = 3 and 4 cases in detail. In each 
case, we shall examine both the minimal Lagrangians (4) and one example in each case 
of an extended Lagrangian of the form (7). We shall restrict our attention to spherically 
symmetric, hedgehog field configurations, so that the variational problem under consid- 
eration will be reduced to a one-dimensional one. 

The only remaining choice is that of the gauge group. The solutions we shall study 
pertain to the case where the gauge field model given by (4) or (7) on R z ( ~ + ~ ) ,  namely 
in 2n Euclidean dimensions, is defined for the gauge field connection taking its values 
in SO&), chiral SO(2n). Here we are guided to this choice by our desire for imposing 
spherical symmetry on the gauge field in a simple and natural way. Chiral S0(4p), with 
n=2p, also happens to be the gauge group of the scale-invariant GYM models on lGD 
for which both spherically symmetric [3] and axially symmetric [5] solutions are known. 
In the latter case, where the self-duality equations are overdetermined [PI, this choice 
of gauge group can also be said to be made for the reason that strict symmetries must 
be imposed to compensate for the overdetermination, except in the case of p = 1 or the 
usual YM model for which instanton [IO] solutions are not restricted [l I] to be at least 
axially symmetric. 

Following our adaptation [3] of the Schwarts [12] formalism for spherically sym- 
metric gauge fields, we express the components of the curvature field strength 
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Fpv=(fi , ,  FQJ, i,j=l,. . . ,2n- 1, of the chiral SO(2n) gauge field at the north pole 
of the sphere s2"-' in Rzn as 

where d=2n, r is the radial coordinate, and Zpv=(Zg,&) denote the generators of 
SO(d) of either chirility. In this note, we shall consider in detail the two cases d=6 
and 8 respectively, which is sac ien t  to explain how to construct such hedgehogs in 
all even dimensions. 

In the following, we shall employ the dimensionless variable p = K-'T instead of the 
radial coordinate, where K is the dimensional constant appearing in (3)-(5). Thus, as 
in the Skyrme model [13], the localization of the hedgehog due to a falloff with a power 
of p will be controlled by the size of the dimensional constant K. 

Six dimensions: Here, there is only one choice for the minimal Lagrangian, namely that 
with p =  1 and q=2 in (4). After the imposition of spherical symmetry using (8a, 8b), 
the residual onedimensional Lagrangian which is proportional to ?L(q= 2 ,p  = 1) can 
be expressed in terms of p as 

Apart from (9), the most general Lagrangian of the form (7) in six dimensions is also 
unique, since there is only one possible candidate for the additional term of the type 
(6) .  This term is the one given by m=3 in (6) 

where q is another constant with the dimension of a length and L=(q/,)' is a dimen- 
sionless coupling strength. Thus the most general Lagrangian in six dimensions for 
which we can expect a non-trivial hedgehog is 

Ls=L,(2, l)+El. ( 1 1 )  

The requirement that the onedimensional integrals of (9), (10) and (11) converge, 
dictates that each (positive definite) term in the integrand vanishes asymptotically. Also, 
the solution must not be singular at p=O. The result of these requirements is 

-1- f ( P ) F + l .  (12) 

Evaluating the surface integral corresponding to the GP density given on the right- 
hand side of (5) with the infinite h i t  of (12), yields unit topological charge. This is 
the charge of the hedgehog. 
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Figure 1. fas  a function of p for thecases: (a) six dimensions with A=O; @) six dhensions 
with A=2; (c) eight dimensions with A,=&=O. 

The Euler-Lagrange equations are 

(13) 
4 

P 
+4p(l - f ) f + - ;  (1 -f2)3f,0.  ~. 

The equation of motion corresponding to the minimal Lagrangian (9) can be read off 
(13) by setting A=O, and otherwise this is the equation of motion for the full system 
(11). 

Settingf= 1 +F with small F in.the (infinite) asymptotic region and retaining only 
the leading terms in (13), the latter reduces to 

pzFpp+3pFp-8F=0 (14) 

whose solution, in terms of an arbitrary constant A ,  is 

which is a power fall-off as in the case of the Skyrmion [13]. In the other asymptotic 
region near the origin, we find the following solution 

8C4+3Cz-16AC6 
1 + cpz- 4 P4+0(P4) 4(1+8C2+16a.C ) f ( P ) T - -  

where Cis an arbitrary constant. Both solutions (15) and (16) hold whether or not I= 
0. Using this solution at the  origin^ we have numerically integrated (13) for different 
values of the parameter A. In figures I(a) and l(b), the solutions are plotted for A=O, 
where C= 1.49, and k=2, where C=0.69, respectively: 

Eight dimensions: Here, there are two possible partitions of n = q + p  but only one of 
them, p =  1 and g=3, is relevant to us since the other one, p = q = 2 ,  is the case where 
the self-duality equations have solutions. As the latter are absolute minima, we cannot 
expect to find any non-self-dual solutions. We therefore restrict our attention to the 
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( p  = 1, q= 3) case for the minimal Lagrangian (4). There are, however, different choices 
for the additional Lagrangian terms (6) ,  namely those with m=2 and 4, or both. 

The minimal Lagrangian for the one-dimensional subsystem obtained after the 
imposition of spherical symmetry, namely using the formulas (sa, 86), is 

This is the analogue of (9), and is proportional to r7L(q=3,p=1). The additional 
Lagrangian terms analogous to (10) are those with m=2 and 4 mentioned above 

where A l = ( 7 7 1 / ~ ) 4  and L2=(q2/ic)I2 are two dimensionless coupling strengths. The 
most general Lagrangian in eight dimensions with hedgehog solutions is then 

L ~ = L I ( ~ ,  l ) + & .  (19) 

The requirements of finite action and regularity result in the same asymptotic condi- 
tions as in the six-dimensional example, namely (12). We expect that these will be the 
appropriate asymptotic conditions for GYM hedgehogs in all 2n dimensions, and that 
in each case t h i s  will lead to unit topological charge given by the integral of the right- 
hand side of (5),  the nth CP density. The Euler-Lagrange equations are 

and as before, setting 11=122=0, we have the equations of motion for the minimal 
model. 

Again, expressing f( p) = 1 +F( p) at inhity, and retaining only the leading terms 
in (ZO), we find 

p2Fpp+5pFp- 12F=O (21) 

whose solution, in terms of an arbitrary constant A, is 
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It can be seen from (15) and (22) that the power fall-off of the GYM hedgehog in 2n 
dimensions is Z(n - 1). The other asymptotic solution, near the ori@n, is found to be 

96C6 + 9C2 + 20& C4- 192&C8 
10+960C4+ 40k1Cz+ 64O&C 1 + cp2- 6 P4+0(P4) f ( d y -  

where Cis an arbitrary constant which will be k e d  in the numerical integration of the 
full equation (20). 

The numerical integration of (20) has been performed for different choices of Ai 
and &. For & = & = O ,  where C=O.92, the solution is plotted in figure l(c). 

The numerid analysis, illustrated by figure l(a), l(b) and l(c) shows that our 
models provide us with families of non-self-dual solutions with a range of quantitatively 
different features. This completes the main task of the present work, namely that of 
showing that instanton solutions are supported by the appropriate GYM models in all 
2(2p+ 1) dimensions in addition to the previously known cases in all 4p dimensions, 
i.e. this covers all even dimensions '2n. 

We finish this letter by noting a general asymptotic property of instanton solutions 
in gauge theories in which the gauge field does not interact with a Higgs field. It follows 
from the infinite asymptotic solutions (15) and (22), that the connection fields A, = 
(A;, Ad), i= 1,. . . ,272- 1, at the north pole 

A;=f(T)&, Ad=O (23) 
corresponding to the field strengths (S), are asymptoticully pure guuge. This can most 
conveniently be demonstrated by expressing the connection field in a covariant gauge 

where the two radial functions are related as f(r) = 1 - 2k(r), and 

(25) 
1 1 

r 2 
x;=-(i&rh+I)r, 0=-g"., 

In (25), r, are the gamma matrices in d=2n dimensions and rd+1 is the corresponding 
chiral matrix. The asymptotic property (24) holds for all the instantons of the GYM 
models in d=2n dimensions, since we know it to be the case for the scale invariant 
ones [Z] already. It should be noted, however, that only in the n=Z, the usual four 
dimensional YM case, is it that the matrix function U happens to be an element of the 
gauge group, chiral SO(&). In that case, the group happens to coincide with SU(Z), 
which has 3 =2n- 1 parameters. In all other cases with n>Z, the number of parameters 
in (25), 2n - 1, is increasingly smaller than the number of parameters in the gauge group 
SO(2n). 
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